If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x-10-3x^2=0
a = -3; b = 11; c = -10;
Δ = b2-4ac
Δ = 112-4·(-3)·(-10)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*-3}=\frac{-12}{-6} =+2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*-3}=\frac{-10}{-6} =1+2/3 $
| 6u+7=49 | | (-4×2)=x | | -6x=19=2x+13 | | 10+2v=12 | | 2(1–f)=f+5 | | 21÷x=7 | | (-7+7x)=42 | | 3/5w+9=3/4w | | 2(5b+7)=84 | | -(y2)=1 | | |2p7|+6=11 | | c=5/9(63) | | 48=9(z+6)–7z | | 1-(y2)=12 | | 12/5=|x| | | f/5+5=20 | | 5/f+5=20 | | v-6=1 | | 0.5c=0 | | F(-2)=3x^2-5x+1 | | 33k=1749 | | 2^(x-10)=7^7x | | 4/3x+1/6x-11/12=1/3 | | -3x-4x+5x=18 | | 10e=6 | | 14=5+t | | 13x+2-(x−3)=x−5−3(x+12)+4x | | 13x+2−(x−3)=x−5−3(x+12)+4x | | 2d-(d-4)=d-4(d+4) | | 6.8z-5.8=-2.9(z-6) | | (3/2)y+(7/2)=(1/2)y-(1/2) | | 9v+8=4 |